sklearn
Last updated
Last updated
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
# 載入資料
X, y = load_iris(return_X_y=True)
# 分割訓練/測試集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 建立模型
model = RandomForestClassifier()
model.fit(X_train, y_train)
# 預測與評估
y_pred = model.predict(X_test)
print("Accuracy:", accuracy_score(y_test, y_pred))from sklearn.preprocessing import StandardScaler, OneHotEncoder
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)from sklearn.model_selection import cross_val_score, GridSearchCV
scores = cross_val_score(model, X, y, cv=5)
print("平均交叉驗證分數:", scores.mean())