Naive Bayes Classifier
Last updated
Last updated
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
texts = ["buy cheap now", "limited offer", "hello friend", "win big prize"]
labels = [1, 1, 0, 1] # 1: spam, 0: ham
vec = CountVectorizer()
X = vec.fit_transform(texts)
X_train, X_test, y_train, y_test = train_test_split(X, labels, test_size=0.5, random_state=42)
model = MultinomialNB()
model.fit(X_train, y_train)
pred = model.predict(X_test)
print("準確率:", accuracy_score(y_test, pred))