Cross-Validation
1. 為什麼要交叉驗證?
2. 常見方法
(1) K-Fold Cross-Validation
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import load_iris
X, y = load_iris(return_X_y=True)
model = LogisticRegression(max_iter=200)
scores = cross_val_score(model, X, y, cv=5)
print("Average Accuracy:", scores.mean())(2) Stratified K-Fold
(3) Leave-One-Out (LOO)
(4) Repeated K-Fold
3. 模型選擇與調參結合
4. 優點與限制
優點
限制
Last updated