Stacking
1. 基本架構
2. 優勢與劣勢
優勢
劣勢
3. Python 範例:Scikit-learn 實作
from sklearn.ensemble import StackingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 資料分割
X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 定義基模型
base_models = [
('dt', DecisionTreeClassifier()),
('svc', SVC(probability=True))
]
# 定義堆疊模型
stack_model = StackingClassifier(
estimators=base_models,
final_estimator=LogisticRegression()
)
# 訓練與預測
stack_model.fit(X_train, y_train)
y_pred = stack_model.predict(X_test)
print("Accuracy:", accuracy_score(y_test, y_pred))4. 應用場景
Last updated