Random Forests
1. 基本概念
2. 特點與優勢
3. Python 實作
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 載入資料
X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 建立模型
clf = RandomForestClassifier(n_estimators=100, max_features='sqrt', random_state=42)
clf.fit(X_train, y_train)
# 預測與評估
y_pred = clf.predict(X_test)
print("Accuracy:", accuracy_score(y_test, y_pred))4. 常見參數
參數名稱
說明
5. 特徵重要性視覺化
6. 應用範疇
Last updated